If it's not what You are looking for type in the equation solver your own equation and let us solve it.
65x=13x^2
We move all terms to the left:
65x-(13x^2)=0
determiningTheFunctionDomain -13x^2+65x=0
a = -13; b = 65; c = 0;
Δ = b2-4ac
Δ = 652-4·(-13)·0
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(65)-65}{2*-13}=\frac{-130}{-26} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(65)+65}{2*-13}=\frac{0}{-26} =0 $
| -4+6d=8d | | -2q+10=3q-10 | | -8+6v=10v | | 4s+7.41=9.57 | | ^x+7=x+1 | | 1.12=1.03^x | | 1.12=1.02^x | | x=8+.33 | | 6-7(2n-4)=52 | | -9b+2=-70 | | 2(r^2-16r+160)=0 | | 6^-2r-2=36 | | b^2+15b+26=0 | | a=(1.01075)^40 | | 5+p=-1 | | 0.23x-1=0.89 | | (3x+3)-(4x-3)=(5x-27) | | x=15x^2+7x-36=0 | | 3x^2-14=2x^2-10 | | a-1/10=7/10 | | 0=20+80t-(-5t^2) | | 2x(x-2)=9x^2-5x | | 36x+54-18x=360 | | 4x+300=10x+450 | | q-12=52 | | 0=20+80t-5t2 | | 2*h=16 | | X+8+x-3=2x+6 | | (6x+1)+(5x+19)=180 | | k^2-16k+15=0 | | 40=r+7.6 | | 18x-6x+3x=180 |